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Abstract A number of microorganisms belonging to the

genera of algae, yeast, bacteria, and fungi have ability to

accumulate neutral lipids under specific cultivation condi-

tions. The microbial lipids contain high fractions of poly-

unsaturated fatty acids and have the potential to serve as a

source of significant quantities of transportation fuels. This

paper reviews the current state of the art of this field. It

summarizes the various microorganism used, feed stocks

available, environmental factors that influence growth of

cells and accumulation of lipids, major fatty acid compo-

sition of lipids, and the technology.
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Introduction

Energy outlook and need for alternative energy

Petroleum is the largest source of energy consumed by the

world’s population, exceeding coal, natural gas, nuclear,

hydro, and renewables [21, 95]. Consumer products

derived from petroleum are present everywhere in our

society. But this consumption of petro-products is rapidly

exhausting global crude oil, increasing the concentration

of greenhouse gases in our environment, and creating

expensive and challenging waste recycling issues. How-

ever, since there is a strong correlation between energy

consumption and standard of living and world population

growth, even higher demand for crude oil and petroleum-

based products is expected in future. Global demand for

petroleum is predicted to increase up to 40% by 2025 [77].

Concerns about energy security, climate change, and

soaring oil prices are driving policymakers and scientists

towards energy alternatives that would allow us to break

our dependence on imported fossilized oil. Fuels derived

from renewable resources are arguably one of the best

options to lead the transition away from petroleum fuels in

the near-term.

Biodiesel produced from vegetable oils, plant oils, or

animal fats by transesterification with low molecular

weight alcohols is an important renewable fuel [115, 202].

Vegetable oils have been used in motor vehicles since the

beginnings of the automobile industry. The German engi-

neer Rudolph Diesel demonstrated his first compression

ignition engine at the 1898 World Exhibition in Paris with

peanut oil as fuel. Diesel engines ran on vegetable oils as

fuel until 1920s when the engines were modified to use

petroleum hydrocarbons as fuel [196].

Biodiesel can be used in diesel engines alone or as a

mixture with petroleum-based diesel fuel. The most com-

mon blend currently used is ‘‘B20’’, a 1:4 mixture of bio-

diesel and petroleum diesel. ‘‘B100’’ implies pure biodiesel.

The advantages of biodiesel include that it is a renewable

resource, is easy to manufacture, and has a positive fossil

energy imprint (requiring only 0.31–0.39 units of fossil

energy to make a 1 unit of fuel [164, 185], superior emis-

sions characteristics, compatibility with existing engines,

distribution infrastructure, and supports domestic agricul-

ture. Vehicles using biodiesel limit the impact of carbon

dioxide on global warming when compared to petrodiesel,

R. Subramaniam � S. Dufreche � M. Zappi � R. Bajpai (&)

Chemical Engineering Department,

University of Louisiana at Lafayette,

P. O. Box 44130, Lafayette, LA 70508, USA

e-mail: bajpair@louisiana.edu

123

J Ind Microbiol Biotechnol (2010) 37:1271–1287

DOI 10.1007/s10295-010-0884-5



although they get slightly fewer miles per gallon. Another

favorable environmental property of biodiesel is its very

low sulfur content [11, 202]; use of biodiesel as fuel would

reduce sulfur and carbon monoxide emissions from our

vehicles by 30 and 10%, respectively. It can decrease air

toxicity by 90% and cancers by 95% compared to petro-

diesel [184]. Finally, biodiesel is better than petrodiesel in

terms of flash point and biodegradability [136].

Global biodiesel production

According to Global Renewable Fuels Alliance [66], Eur-

ope and the USA are the two largest markets for biodiesel.

Europe leads the world in biodiesel production and con-

sumption; production started there in the early 1990s and

grew to over 500 million gallons by 2004 [197]. The 2009

production of biodiesel in Europe stood at 2.6 billion gal-

lons (S&T2 [37]). Biodiesel production in the USA started

in earnest in 2000 and grew from 25 million gallons in

2004 to 678 million gallons in 2008 [96]. In 2009, market

conditions dictated a reduction of biodiesel production in

the USA to 440 million gallons, but it is expected to rise

again [148]. Biodiesel production of late has been driven

by mandatory alternative fuel-use legislations [197]. Other

producers are not yet large, but they are increasing their

production capacity rapidly (S&T2 [37]). The total global

production of biodiesel in 2009 was 4.3 billion gallons.

China at 50 million gallons was a small producer of bio-

diesel because it is a big net importer of all the major edible

vegetable oils and lacks the land for crop production for

biodiesel. Currently, most of China’s biodiesel production

is based on animal fat or waste vegetable oil from oil

crushing plants or restaurants [199]. The production in

India in 2009 was 6 million gallons, again from waste oil,

but the Government of India (GoI) has launched a National

Mission on Biofuels with the aim of achieving a target of

20% blending of biodiesel by 2012 [177]. In Brazil, the

targeted biodiesel production in 2010 is 500 million gal-

lons per year [26].

Biodiesel feed stocks

Biodiesels are esters of fatty acids and can be produced

from any vegetable oil, plant oil, or animal fat. At present,

biodiesel is produced mainly from soybean and vegetable

oils [24], palm oil [6], sunflower oil [11], rapeseed oil [163],

Jatropha oil [76], and restaurant waste oil [19, 45]. Oils and

fats are primarily composed of triacylglycerols (TAGs),

three fatty acid molecules attached to a glycerol backbone

by ester bonds. These may contain lesser amounts of dia-

cylglycerols (DAGs) and also monoacylglycerol (MAGs).

The fatty acids in biodiesel can be of varying chain lengths.

Longer chain length of fatty acids results in biodiesel with a

higher cetane number and reduced NOx emissions in engine

exhausts [11, 115, 202]. Wastes such as used cooking oils

and fats can also be used as raw materials, but these may

contain large amounts of free fatty acids and require addi-

tional processing [44, 72].

Limitations of agricultural feedstocks for biofuels

The rapid expansion in biofuel production has stretched

the potential resources that can be used as raw materials.

There have been growing concerns about the impact of

rising commodity prices on the global food system. World

food prices rose 10% in 2006 because of increases in

corn, wheat, and soybean prices, primarily from demand-

side factors, including rising biofuel demand [40]. The

Chinese government identified many potential non-grain

feedstocks such as cassava and sweet potatoes for biofuel

production to avoid high food prices. Mexico capped

tortilla prices in early 2007 to contain food price inflation

from higher priced corn imports. Real sugar prices hit a

10-year high in 2006, stressing budgets of low-income

people in Brazil and elsewhere. The Indonesian Govern-

ment increased the export duty on crude palm oil, also

used in biodiesel production, in mid-2007 to slow the

rising cost of domestic cooking oil [207]. Prices have

since declined, but these issues brought forth the debates

of food vs. fuel.

Biodiesel derived from oilseeds or animal fat can deliver

only a small fraction of the existing demand for transport

fuels without committing excessively large acreages of

quality agricultural land for cultivation of oilseed crops

targeted away from food production [32]. Therefore, it is

necessary to explore new raw materials that (1) deliver

superior environmental benefits over the fossilized mate-

rials they displace, (2) are economically competitive, (3)

can be produced in quantities sufficient to meet the energy

demands, (4) provide a net energy gain over the energy

sources used to produce it, and (5) also do not compete

with food production [143]. Microbial oils fit these bills if

these can be produced economically and, therefore, have

received much interest in order to resolve the worldwide

crude oil and greenhouse-gas crisis [32]. Microorganisms

have many advantages over plants for production of lipids,

such as short life cycles, less labor required, less demand

on space, venue, season and climate, and ease of scale up.

Photosynthetic microorganisms have 100-fold higher yield

of lipids per hectare than plants [179]. Lipids produced by

oleaginous microorganisms are considered as promising

candidates for biodiesel production because fatty acid

composition is similar to that of vegetable oils [89].

Microbial lipids are rich in specific polyunsaturated fatty

acids also and are often used in dietary supplements and for

infant nutrition [171, 189].
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Microorganisms for lipid production

Microorganisms belonging to several different families,

such as microalgae, bacillus, and fungi (molds and yeasts),

possess the ability to produce and accumulate a large

fraction of their dry mass as lipids [111, 146]. Those with

lipid content in excess of 20% are classified as ‘oleaginous’

[174]. Several microorganisms with potential for microbial

oil production are listed in Table 1.

Micro algae

Microalgae, also called ‘miniature sunlight-driven bio-

chemical factories’ [201], are capable of producing large

amounts of lipids and hydrocarbons in the presence of

sunlight and carbon dioxide from flue gases. Microalgae

can be a promising alternative feedstock for the next gen-

eration of biofuels, as they have a relatively high lipid

content, grow fast, and can be harvested daily [69, 219].

Doubling times of algae are on the order of 4–24 h [33] and

as short as 3.5 h [32] during exponential growth. Algae

have a number of advantages over terrestrial energy crops,

such as higher photosynthetic efficiency, surface area

productivity, absence of need for arable land, and low

nutritional needs [32]. Algae can be sources of several

different types of renewable biofuels [39], including bio-

diesel from neutral lipids [63], bio hydrogen [104],

hydrocarbons [14, 112], ethanol [25], and methane [97].

The average lipid content of algal cells varies between 1

and 70% [69, 139, 141, 217], but can reach as high as 90%

of dry weight under specific conditions [144].

The growth of cells and lipid accumulation by algae

under phototrophic conditions is influenced by the intensity

of light, pH, dissolved oxygen concentration, fraction of

carbon dioxide in sparging gas, concentration of nutrients

such as nitrogen, phosphorous, silicon, and iron, and

presence of organic carbon sources.

To enhance the economic feasibility of algal oil pro-

duction, biomass productivity (production per unit volume

per unit time), cellular lipid content, and overall lipid

productivity are the three key parameters that need to be

improved. These requirements are not always compatible,

and in general, conditions favoring a high growth rate of

cells result in a low lipid fraction in the cells and vice versa

[135].

High cellular lipid content in algae is usually achieved

under environmental stress [121]. The stress may be caused

by limitations of nitrogen [50, 94, 121, 123, 125, 180, 182,

186, 204], phosphorous [175, 180, 210], silicon [70],

salinity [167], and iron [131]. Lipid accumulation in

the cells also depends on the growth phase of cells

[34, 181, 193].

Effect of nutrient limitations

Nitrogen and/or phosphorous limitations in the medium

result in increased production of lipids in algal cells as well

as in increased lipid productivity [43, 180]. Illman et al.

[94] studied batch growth of five strains of the green alga

Chlorella in Watanabe medium and in a low-nitrogen

medium in a 2-l stirred bioreactor. Higher lipid content was

seen for all the five strains in the low-nitrogen medium

when compared to that in Watanabe medium. The greatest

increases were seen in Chlorella vulgaris, for which the

lipid content (percent dry weight) increased from 18% in

Watanabe medium to 40% in low-nitrogen medium; the

lipid fraction in Chlorella emersonii increased from 29 to

63% of dry weight [94].

Table 1 Oil content of some oleaginous microorganisms [32, 143]

Microorganisms Oil content

(% dry weight)

Microalgae

Botryococcus braunii 25–75

Cylindrotheca sp. 16–37

Chlorella sp. 28–32

Crypthecodinium cohnii 20

Dunaliella primolecta 23

Isochrysis sp. 25–33

Monallanthus salina [20

Nannochloris sp. 20–35

Nannochloropsis sp. 31–68

Neochloris oleoabundans 35–54

Nitzschia sp. 45–47

Phaeodactylum tricornutum 20–30

Schizochytrium sp. 50–77

Tetraselmis sueica 15–23

Bacteria

Arthrobacter sp. [40

Acinetobacter calcoaceticus 27–38

Rhodococcus opacus 24–25

Bacillus alcalophilus 18–24

Yeast

Candida curvata 58

Cryptococcus albidus 65

Lipomyces starkeyi 64

Rhodotorula glutinis 72

Molds

Aspergillus oryzae 57

Mortierella isabellina 86

Humicola lanuginose 75

Mortierella vinacea 66
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Scragg et al. [182] performed further studies with the C.

vulgaris and C. emersonii strains in tubular reactors using

the same Watanabe and low-nitrogen media. The specific

growth rate of C. vulgaris in Watanabe medium was

0.4 day-1. In the low-nitrogen medium, growth was

biphasic with an initial specific growth rate of 0.69 day-1,

and it decreased to 0.12 day-1 after day 4. The specific

growth rate for C. emersonii was 0.38 day-1 for both the

Watanabe and the low-nitrogen medium. Lipid content

increased for both strains in low-nitrogen medium,

increasing from 28 to 58% dry weight for C. vulgaris and

from 25 to 34% dry weight for C. emersonii [182].

Lipid accumulation in algal cells is not growth associated.

Chiu et al. [34] reported that the lipid contents of N. oculata

cells in nitrogen-limited medium during logarithmic, early

stationary, and late stationary phases were 30.8, 39.7, and

50.4%, respectively, congruently with a decrease in nitrogen

content in the broth. Exhaustion of nitrogen in medium may

cause cessation of cell division, but carbon metabolism

continues, resulting in diversion of carbon to lipid produc-

tion [17]. Total biomass concentration may still increase

mainly due to increase in lipid content of cells. A similar

effect, hampered cell division due to nutrient limitation, was

observed for diatoms in silica-depleted media. However, the

results for lipid accumulation were found to be different for

different strains of diatoms. Some strains showed an

increase in lipid content, particularly neutral lipids. How-

ever, lipid content of other strains remained unchanged

while the growth rate decreased, resulting in much lower

total biomass [186]. Even for heterotrophic algae Chlorella

protothecoides, the lipid production increased under nitro-

gen limitation [187]. However, a higher lipid fraction in cells

does not necessarily translate into higher productivity of

lipids. Weldy and Huesemann [204] studied the combined

effect of light intensity, N deficient and N sufficient condi-

tions on growth of Dunaliella salina. They recorded higher

lipids productivity (66 mg l-1 day-1) under N-sufficient

conditions and high light intensity than under N-deficient

conditions (12 mg l-1 day-1).

The nature of nitrogen source can also impact algal cell

growth and lipid productivity [94, 121, 180]. According to

Li et al. [123], the order of specific growth rate of fresh-

water algae Scenedesmus sp. on different nitrogen sources

is NH4-N [ urea-N [ NO3-N. However, H? released from

consumption of NH4
? ions has the potential of reducing

medium pH to values inhibitory to cell growth. Green algae

Neochloris oleoabundans cultivated in the presence of

5 mM NaNO3 resulted in cells with lipid fraction of 33%

of dry matter, whereas the cells had only 19 and 17.5%

lipids, respectively, in the presence of 5 mM ammonium

bicarbonate and urea [121]. The lipid productivity values

were 133, 33 and 57 mg l-1 day-1, respectively, with the

three nitrogen sources. On the other hand, Fidalgo et al.

[61] reported that total fatty acid content in algal cells is

influenced by the nitrogen source, but the gross biochem-

ical composition is affected more by the growth phase than

by the nitrogen source.

Effect of carbon dioxide

The fraction of carbon dioxide in sparging gas has a pro-

found effect on cell growth and lipid accumulation [29, 34,

83, 84] both due to its effect on medium pH as well as on

the availability of bicarbonates used by the cells as carbon

source. Chiu et al. [34] reported that Nannochloropsis

oculata cells grew faster (0.571 day-1 vs. 0.194 day-1)

and to a higher maximum cell concentration (1.277 g l-1

vs. 0.268 g l-1) as the carbon dioxide fraction in sparging

air was increased from 0.03 to 2%. Further increase in the

CO2 fraction decreased cell production with complete

inhibition of cell growth at 5% CO2 in inlet air. The tox-

icity of carbon dioxide to microalgal cells above 5% (v/v)

was reported by several other researchers as well [27, 42,

190]. On the other hand, pre-adapting the cells to higher

carbon dioxide fractions in gas phase and use of high

inoculums levels helped the N. oculata cells [34] overcome

the CO2 toxicity in a semicontinuous reactor, suggesting

that the observed carbon dioxide toxicity in the batch

system may have been due to an associated phenomenon.

In experiments conducted in our laboratory with cultivation

of Scenedesmus cells (unpublished data), sparging medium

with pure carbon dioxide resulted in unfavorable pH con-

ditions in broth and growth inhibition. This condition could

be reversed by sparging the medium with air and adjust-

ment of pH. Several researchers have been able to cultivate

Botryococcus braunii at high carbon dioxide concentra-

tions [64, 168, 217]. Ge et al. [64] cultivated their cells in a

3-l photobioreactor illuminated with cool white fluorescent

lights (150 lmol m-2 s-1) at 25�C and sparged continu-

ously with air containing up to 20% CO2 without any pH

adjustment. A maximum cell density of 2.3 g l-1 along

with a hydrocarbon content of 24.5% and lipid content of

12.7% was obtained with 20% CO2 on the 25th day.

Effect of PAR photon flux (light intensity)

Light (photon intensity) is critical to cell growth and lipid

accumulation under phototrophic conditions. The specific

growth rate of cells increases with increasing photon irra-

diation flux (characterized in lmol photon m-2 s-1) in the

photosynthetically active range (PAR 400–700 nm), but

shows a characteristic saturation/inhibition behavior with

irradiation flux beyond an optimum value [16, 71, 117].

The photon flux saturation behavior is manifested as the

photon flux reaches the culture’s capability to process the

energy captured by the cellular photosynthetic machinery
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[67]. Higher values of photon flux result in dissipation of

photonic energy as heat and may cause photo inhibition of

cellular functions [134]. In most algal photobioreactors, the

photonic flux optimum for growth of cells occurs between

345 and 1,125 lmol photon m-2 s-1. However, there is

evidence that proper design of bioreactors can help push

this limit to several-fold higher values [67, 71]. It can also

be achieved through use of light-emitting diodes [107,

194], light pulsations [178], mixing in dense cultures [86],

or genetic engineering [147, 166, 195]. The genetic

approaches focus either on decreasing the photosynthetic

antenna size [67] or on enhancing the rate of carbon fixa-

tion (dark) reactions that are characterized by the largest

time constants in photosynthesis [194]. A recent study by

Theodoridou et al. [198] suggests that the same effect may

be obtained by chemical means also. These authors

investigated the enhancement of phototrophic growth of

Scenedesmus obliquus by low concentrations of methanol

and observed a decrease in size of light-harvesting complex

concomitant with increased photosynthesis and respiration

rates. Algae grown at low irradiance had a relatively higher

content of the total lipids compared to those exposed to

high light intensity [108].

Effect of environmental parameters

Cultivation time, initial pH, and medium composition are

the key parameters for enhancement of biomass growth,

lipid content, and fatty acid profile [192, 209]. Concen-

trations of NaCl and nitrogen in the medium significantly

affect the total lipids, unsaponifiables contents, and fatty

acid composition for the algal strain D. salina [135].

A higher yield of total lipids and higher proportion of

polyunsaturated fatty acids (C18 and C16) were obtained

when the NaCl concentration was increased from 8 to 16%

[50]. Since nutrients represent a major cost factor in the

production of microbial oils, Kim et al. [109] explored and

found that supplementation of medium with fermented and

treated swine urine could improve the cost efficiency of

microalgal biodiesel production. The organic acids,

enzymes, and hormones generated by bacteria during the

fermentation of swine urine serve to accelerate the physi-

ological and biochemical activities of the growing cells,

and also cause a delay in the onset of stationary phase of

the cell divisions, despite the shortage of inorganic nutri-

ents within the medium. In Chlorella sp., the production of

fatty acids increased with an increase in sodium thiosul-

phate concentration, but addition of glucose was counter-

productive [59].

Optimum temperatures for cultivation of algae range

from 25 to 35�C. These were reported to be 25–27�C for

Rhodomonas sp., 27–30�C for Prymnesiophyte, Crypto-

monas sp., Chaetoceros sp., and Isochrysis sp., and

33–35�C for Chaetoceros sp. by Renaud et al. [176]. More

biomass was obtained at 30�C than at 35�C with S. plat-

ensis [36]. Increasing temperature from 20 to 25�C

increased the lipid content of N. oculata from 7.90 to

14.92%; but the lipid content of C. vulgaris decreased from

14.71 to 5.90% when the temperature was increased from

25 to 30�C [38]. The optimum temperature range for

Cyclotella cryptica was found to be 22.5 to 25�C [156].

Medium pH is an important parameter in photoauto-

trophic as well as heterotrophic cultivation of algae. The

optimal pH range for Cyclotella crypticaI is 7.2–9.0 [98,

156]. The favorable initial pH of the medium for the

growth of Trichosporon fermentans is 6.5 [220] and that

for Chaetoceros sp., Rhodomonas sp., and Cryptomonas sp.

is 8.3 [176].

Some algae strains can grow both autotrophically and

heterotrophically. Heterotrophic cultivation on organic

carbon sources has been used to overcome the issues of

photonic energy delivery to cells in photoautotrophic

growth. Li and coworkers [118, 212] reported cultivation of

C. protothecoides heterotrophically in fed-batch bioreac-

tors. Up to 52 g/l cell density with 50% lipid content in dry

cells was obtained in these systems. High biomass and high

lipid yield have been found when heterotrophic algae are

placed in low light and supplied with organic carbon rather

than carbon dioxide as carbon source [145, 213]. Miao and

Wu [145] reported that autotrophic C. protothecoides

possessed a lipid content of 14.57%, whereas the hetero-

trophically grown cells had 55.2% lipids. Autotrophic and

heterotrophic growth of algal cells has been reported by Oh

et al. [153] and Shen et al. [187]. Oh et al. [153] observed

that cells of marine alga Porphyridium cruentum grew at a

faster pace under 18:6 h light:dark cycle (0.042 h-1) than

under 12:12 h cycle (0.031 h-1). However, the lipid frac-

tion in cells was higher (19.3% w/w) in the case of a

12:12 h light:dark cycle. Mixotrophic growth conditions

resulted in the highest and fastest lipid production by the

cells, due perhaps to less loss of cell mass during the dark

cycle [35]. The macro algae strain Oedogonium had higher

algal oil production than Spirogyra, but Spirogyra had a

higher biomass content than Oedogonium after oil extrac-

tion [81]. Both Chojnacka and Noworyta [35] and Andrade

and Costa [8] found that mixotrophic growth can result in a

several fold increase in specific growth rate and maximum

cell density of cells.

Algae can be cultivated heterotrophically on organic

carbon in photobioreactors to produce lipids while treating

organic wastes. A summary of these possibilities has been

presented by Brennan and Owende [21]. In the heterotro-

phic and mixotrophic cultivation of algae, the cost of car-

bohydrates represents a major cost factor towards the cost

of lipids. Use of carbohydrates in wastes for growth of cells

not only reduces this cost, it may even result in credit for
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mitigating wastes and thus improve the economics of lipid

production [60].

Molds

Some oleaginous molds (filamentous fungi) can store up

to 80% of their biomass as lipids [150]. The lipids in

fungi are mainly influenced by the nature of the nitrogen

source, carbon source, C/N ratio, temperature, agitation,

and pH in broth. Molds produce a high concentration of

c-linolenic acid (GLA) and arachidonic acid (AA) and

are, therefore, often cultivated to produce these higher

value products more than other lipids for biofuels. As in

most other microbes, lipid production in cells increases

with increasing C/N ratio [161]. But Rasheva et al. [169]

did not find any influence of C/N ratio and nitrogen

source on the neutral, phospholipid, and glycolipid

composition.

The oleaginous fungus, Mucor rouxii, is known to

accumulate a high level of intracellular lipids and GLA

[138]. Eroshin et al. [52] reported production of as much as

4.5 g l-1 AA by Mortierella alpina with a productivity of

19.2 mg l-1 h-1 with potassium nitrate as nitrogen source.

AA in the cells was more than 18% of dry cell mass and

over 60% of the total lipids in the cells. Aki et al. [2]

succeeded in producing 7.1 g.l-1 arachidonic acid (AA)

using the fungus Mortierella alliacea in a 50-l jar with a

25-l working volume; a medium containing 12% glucose

and 3% yeast extract produced 46.1 g l-1 cells with 42.3%

lipids in 7 days. When starch was used as carbon source,

the volumetric concentration of AA obtained was 5 g l-1.

The production of these polyunsaturated fatty acids in

the cells is related to the age of the mycelia. Fakas et al.

(57, 58) found that their fraction was highest in young

mycelia, and it decreased as the cells grew older. Enhanced

biomass of 28.1 g l-1 and a lipid content of 62.4% were

achieved for T. fermentans by Zhu et al. [220] with peptone

as nitrogen source, glucose as carbon source, and a C/N

ratio of 163. Similarly remarkable lipid productions have

been reported also by Andre et al. [9] and Papanikolaou

et al. [158] for Aspergillus niger and Mortierella

isabellina.

Oleaginous molds can also be used for the production of

cocoa butter substitutes. Cocoa butter has a high saturated

fatty acid content of up to 60%; of this 35% is stearic acid

and 25% is palmitic acid [47].

Effect of carbon source and environmental conditions

on lipid production by molds

Carbon sources can strongly influence the production and

composition of fatty acids in lipids of the fungi due to

differences in their metabolism. Glucose, lactose, starches,

oils, corn steep liquor, and agricultural produce have been

used as carbon sources for production of lipids from fungi

[1, 28, 49, 129, 152, 188]. Somashekar et al. [188] reported

that glucose was a better carbon source than lactose for

fungi Mucor rouxii and Mucor sp.1b. The cells grown on

glucose had high lipid (30% by weight) as well as high

GLA content (3–17% of lipids). Although cells cultivated

on sesame oil had a higher lipid content (44%), there was

no GLA production with plant oil as carbon source. With

Cunninghamella echinulata, a maximum GLA production

of 1.35 mg l-1 was obtained when using soluble starch as

carbon source [28]. Lipid yield of 0.11 g g-1 of dry weight

of sweet sorghum was achieved with M. isabellina using

solid-state fermentation [49]. A lipid content of 4.41% was

obtained when orange peel extracts were used as carbon

source for Geotricum candida; the lipids contained mainly

the TGA (24.31%), FFA (16.74%), sterols (12.0%), and

polar lipids [221].

A high GLA content of 18.3% was obtained by Hiruta

et al. [78] with Mortierella ramanniana under the opti-

mized condition of pH (4), inoculum spore concentration

(5 9 103 ml-1), and agitation (800 rpm). The effect of

medium composition, temperature, pH, culture time, and

substrate concentration was studied by Xian et al. [211] for

the production of c-linolenic acid (GLA) by M. isabellina

on octadecanol, and the maximum production was obtained

using 2% octadecanol, 1% yeast extract, and 25 mmol l-1

of Mg2? at 23�C for 5 days. Under the optimized condi-

tions of the ratio of steam-exploded wheat straw (SEWS) to

wheat bran (WB) of the dry substrate, initial moisture

content, and incubation temperature, the maximum single-

cell oil production of 8% of dry cells was obtained in

Microsphaeropsis sp. by Peng and Chen [162].

The highest value of GLA of 36% w/w of lipids and

2.7% w/w of cells was produced by M. inaquisporus when

growing exponentially in batch cultures [51]. Sergeeva

et al. [183] studied the synthesis of lipids with the fungal

species P. moreaui, P. caucasica, and P. anomala, and

estimated the fatty acid profiles of each species. The

maximum stearic acid content was 11.8–15.8% in P. mo-

reaui, and 4.1–9.6% in P. anomala and P. caucasica. In all

the species, 0.4–1.4% eicosanoic acid and 0.6–2.7% of

unsaturated fatty acids (palmitoleic and eicosenoic acids)

were found. The cellulolytic fungus, Aspergillus oryzae A-

4, yielded a lipid content of 36.6 mg g-1 dry substrate by

direct microbial conversion of wheat straw in suspended

cultures and 62.87 mg g-1 dry substrate in solid substrate

fermentation under optimized conditions [91]. With pep-

tone and glucose as C and N sources, M. rouxii and Mucor

sp. resulted in production of 30% lipids with up to 17%

GLA in lipids; the major fatty acids produced were pal-

mitic, stearic, and oleic acids [188]. A C/N molar ratio of
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163, initial pH of 6.5, and 25�C were the optimum con-

ditions for lipid production with T. fermentans [220].

Some fungal cells (A. niger, A. oryzae) are net producers

of lipids, whereas others (Pleurotus ostreatus) are net

consumers of lipids; the total lipid content of sweet potato

fermented with A. niger, A. oryzae cells in solid-state fer-

mentation increased from 1.93 to 3.17% and 8.71%,

respectively, but decreased from 1.93 to 0.54% when fer-

mented with P. ostreatus [1].

Yeast

Oleaginous yeasts are single-celled fungi having at least

20% of their dry weight made up of lipids [174]. Oleaginous

yeasts have a fast growth rate and high oil content, and their

triacylglycerol (TAG) fraction is similar to that of plant oils.

These organisms can grow on a multitude of carbon sources

(glucose, xylose, arabinose, mannose, glycerol, and other

agricultural and industrial residues). Most oleaginous yeasts

can accumulate lipids at levels of more than 40% of their

dry weight and as much as 70% under nutrient-limiting

conditions [17]. However, the lipid content and fatty acid

profile differ between species [17, 122, 143]. Some of the

yeasts with high oil content are Rhodotorula glutinis,

Cryptococcus albidus, Lipomyces starkeyi, and Candida

curvata [143]. The main requirement for high lipid pro-

duction is a medium with an excess of carbon source and

other limiting nutrients, mostly nitrogen. Hence, production

of lipids is strongly influenced by the C/N ratio, aeration,

inorganic salts, pH, and temperature [159].

Effect of carbon sources

Yeasts are able to utilize several different carbon sources

for the production of cell mass and lipids. These sources

can be glucose, xylose, glycerol, starch, cellulose hydrol-

ysates, and industrial and municipal organic wastes. In all

cases, accumulation of lipids takes place under conditions

of limitations caused by a nutrient other than carbon.

Easterling et al. [48] explored production of lipids by the

yeast R. glutinis on different carbon sources (dextrose,

xylose, glycerol, mixtures of dextrose and xylose, xylose

and glycerol, and dextrose and glycerol). The highest lipid

production of 34% TAG on a dry weight basis was mea-

sured with a mixture of dextrose and glycerol as carbon

source [48]. The fraction of unsaturated fatty acids in the

TAGs was dependent on carbon source, with the highest

value of 53% on glycerol and lowest value of 25% on

xylose. With whey permeate for production of lipids by

different yeast strains, L. starkeyi ATCC 12659 was found

to have the highest potential of accumulating lipids among

Apiotrichwn curvatum ATCC 10567, Cryptococcus albidus

ATCC 56297, L. starkeyi ATCC 12659, and Rhodospo-

ridium toruloides ATCC. The yeast L. starkeyi is unique in

that it is known not to reutilize the lipids produced by it

[80] and it produces extracellular carbohydrolases [103].

Angerbauer et al. [10] explored production of lipids from

sewage sludge using yeast L. starkeyi. While there was

no growth on untreated sludge, pretreatment of sludge

with alkali or acid or heat, or even ultrasound resulted in

cell growth and lipid accumulation. Sludge itself had no

inhibitory effect on cell growth.

Production of microbial lipids from glucose and sweet

potato starch has been studied [161, 206]. These authors

confirmed the earlier reports [10] of the effect of C/N ratio

on production of lipids by L. starkeyi and that the condi-

tions favoring accumulation of lipids result in reduced

growth of cells. The cells could consume liquefied starch in

batch culture and produced cells containing 40% lipids at a

cell yield of 0.41 g dry weight per g starch [206]. The yield

on starch was higher than when glucose was used as carbon

source.

C/N ratio, pH, temperature and other environmental

parameters

Culture temperature and pH influence the total cell number

and lipid content in yeast cells [151, 17]. In minimal

medium with glucose as carbon source, the yeast L. star-

keyi accumulates large fractions of dry weight as lipids

with a high yield in the pH range of 5.0–6.5 [10]. But Patil

[161] found that cell yield on glucose was higher at pH of

5.5 than at 6.

The lipid fraction and fatty acid composition in yeast

C. curvata varied with temperature, pH, and medium

composition, but octadecenoic, stearic, and linoleic acids

remained the principle fatty acids in the yeast cells [116].

In Saccharomyces cerevisiae cells, the degree of unsatu-

ration increased and the chain length in fatty acids

decreased when the cells were cultivated at lower tem-

peratures [15]. At higher temperatures, the cellular lipid

content, the glucose conversion efficiency, and the specific

lipid production rates in L. starkeyi were high, but the

degree of fatty acid unsaturation was low [191]. Fastest

growth of L. starkeyi cells occurred at 28�C (specific

growth rate 0.158 h-1), and the lipid fraction in cells under

these conditions was 55%. However, the fraction of oleic

acid in the lipids increased from 52 to 60% of lipids when

the accumulation phase temperature was reduced from

growth temperature of 28–15�C.

High lipid accumulation in cells of oleaginous yeast is

obtained under limiting nitrogen concentration conditions

[17, 54, 161]. The oleaginous yeast L. starkeyi delivered

lipid content of 68% at a C/N ratio of 150 compared to

40% in the presence of a C/N ratio of 60 while growing on
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digested sewage sludge [10]. Similar results were obtained

by Patil [161] also while using a semi-synthetic medium

for cultivation of L. starkeyi. Patil [161] reported a maxi-

mum specific growth rate of cells at 0.1 h-1 and lipid

content of 27% fed-batch fermentation, which is slightly

higher than the specific growth rate of 0.08 h-1 and lipid

content of 23% in batch fermentation of L. starkeyi on

glucose in a semi-synthetic medium with C/N molar ratio

of 56.7. The key fatty acids produced were C16:0, C16:1,

C18:0, and C18:1. Accumulation of lipids by Cryptococcus

curvatus cells also required a high C/N ratio of 50 in batch

and fed-batch cultures [75]; the fatty acids produced were

mainly oleic (C18:1), palmitic (C16:0), and stearic (C18:0).

The highest fraction of stearic acid (18:0) in batch cultures

was 14 and 19% in fed-batch culture.

Under optimal fermentation conditions in a batch reactor

(100 g l-1 glucose as carbon source, 8 g l-1 yeast extract,

and 3 g l-1 peptone as nitrogen sources, initial pH of 5.0,

inoculation volume of 5%, 28�C temperature, and 180 rpm

agitation in a 5-l bioreactor), Rhodotorula glutinis can

accumulate lipids up to 49% of cell dry weight and

14.7 g l-1 lipid [41]. In continuous culture, the cell bio-

mass, lipid content, and lipid yield increase with decreasing

growth rate [4]. Dai et al. [41] obtained 60.7% lipids in

cells and 23.4 g l-1 lipid production in a continuous mode

of operation. In R. toruloides cultivated in fed-batch mode,

oleic, palmitic, stearic, and linoleic acids were the main

fatty acids [119]. Also in R. mucilaginosa TJY15a, 85.8%

long-chain fatty acids were composed of palmitic, palmit-

oleic, stearic, oleic, and linolenic acids [124]. Under con-

tinuous culture conditions, Ratledge and Hall [173]

recommend nitrogen-limited medium and a dilution rate of

about one-third of the maximum to achieve the maximum

content of lipids in a microorganism.

Bacteria

Bacteria demonstrate high cell growth rates under simple

cultivation methods [143]. Bacterial species such as

Mycobacterium, Streptomyces, Rhodococcus, and Nocar-

dia can accumulate triacylglycerols (TAG) at high con-

centrations. The compositions and structures of bacterial

TAG vary considerably depending on the microorganism

and on the carbon source [3]. The Actinomycete group of

bacteria are capable of accumulating remarkably high

amounts of intracellular fatty acids as TAGs (up to 70% of

the cell dry weight) from simple carbon sources like glu-

cose under growth-limited conditions [102]. The bacterial

species Rhodococcus and Nocardia corallina accumulate

primarily TAGs with minor amounts of diacylglycerols

(DAGs) and wax esters under nitrogen-limiting conditions

[5]. The accumulation takes place mostly during the

stationary phase of growth, i.e., after the cessation of net

protein synthesis [154].

Not all bacteria, however, accumulate large quantities of

fatty acids. Bacterial strains Dietzia maris sp. S1, Stappia

sp. AG2, Nocardioides sp. S3, Sphingomonas sp. AG6,

Oceanicaulis alexandrii sp. AG4, O. alexandrii sp. AG7,

and Micrococcus sp. AG10 isolated from marine living

cells, contain a total fatty acid (TFA) content from 0.3 to

4% dry weight [218]. Bacterial growth in batch operations

is affected by two variables: micro- and macro-nutrient

limitations. Excess micronutrients support very high bio-

mass concentrations. However, macronutrients are con-

sumed progressively, and consequently they cause a

slowing down of and finally halt in growth [113].

Bio-resources available for lipid production

Commercial production of lipids is hampered by the high

cost of the substrates. Hence, various low-cost and effec-

tive alternative feedstocks have been explored. These

include carpet mill effluents [30, 31], sweet sorghum juice

[49, 62, 126], sweet potato waste [1, 205, 206], tomato

waste [56], dairy farm and municipal wastewater [74, 99,

106, 114, 140, 155, 203, 208], biodiesel-derived glycerol

[9, 12, 53, 127, 128, 137, 149, 160], fertilizer effluent [7],

sewage sludge [10], urea [82], lignocellulosic materials

[88], waste molasses [105, 220], beet molasses [55, 65,

116], soluble starch [28, 161], sugar cane molasses [4, 68],

orange peel extracts [221, 68], industrial glycerol [157],

power plant flue gas [100, 217], prickly pear juice [74],

agro industrial byproducts [68, 152], corn steep liquor

[129], cassava starch [124], wheat straw mixed with wheat

bran [162], waste rice straw [89], and starch wastewater

[215]. Most of these substrates are locally available and

thus are expected to support mainly small production

facilities. The exceptions are the sewage sludge and power

plant flue gas, both of which have potential for very

widespread usage. Given carbon dioxide production of

452–920 kg per MWh [93] and algae yield of 0.55 kg per

kg CO2, each power plant has a potential for producing

1,900–4,000 tons of algae (or 1–2 kton algae assuming a

50% CO2 capture efficiency) per MW capacity per year.

With 30–35% extractable lipids in algae, this potential

translates into 0.1–0.2 million gallons of lipids along with

0.7–1.4 kton algal cake per year for each MW power plant

capacity while reducing carbon dioxide emissions in half.

Modes of cultivation for microbial lipid production

Batch, repeated batch, fed-batch, and continuous cultiva-

tions all have been used to produce microbial oils in the
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laboratory. Agitation systems are critical in the bioreactors

as was shown by Hiruta et al. [79]. These authors compared

the Maxblend impeller to turbine impeller in agitated fer-

menters and showed that the mixing capacity of the Max-

blend impeller was higher. Consequently, the mixing time

was less than 50% of the turbine impeller, and a higher

GLA content in the lipid was achieved.

Batch operation

Most studies on microbial lipid accumulation have been

conducted using batch cultivation. The cell growth and the

production of neutral lipids, carbohydrates, and proteins by

the alga Botryococcus sudeticus was studied by Duhalt and

Greppin [46] in batch culture for a period of 18 weeks, and

a maximum production of 4.5% protein, 7.5% carbohy-

drate, and 22.0% neutral lipid on a dry weight basis was

obtained during the stationary phase. During the expo-

nential growth phase of the batch operation, most of the

metabolic energy is used for synthesis of cell constituents;

in the stationary phase, the energy is predominantly used

for the synthesis of extracellular compounds [46]. The

fungal strain M. inaquisporus has been used for production

of lipids in batch reactors. The degree of unsaturation and

GLA content of the lipid increased with increasing lipid

content in M. inaquisporus during the logarithmic growth

phase and decreased during the stationary growth phase

while the lipid content in the biomass remained constant

[51]. At bench scale, the maximum GLA content obtained

was 2% (w/w) dry biomass. Some commercial strains can

accumulate up to 4% GLA during batch processing [170].

Fed-batch and repeated batch operation

Fed-batch culture has proved effective in increasing

both the cell density and lipid contents of oleaginous

yeasts. Microbial lipid production by the oleaginous yeast

Rhorosporidium toruloides was studied in batch, flask

fed-batch, and pilot-scale fed-batch (15-l stirred-tank

fermenter) mode using glucose as carbon source [118–120].

Flask fed-batch mode resulted in a cell concentration of

151.5 g l-1 with a cellular lipid content of 48.0% w/w in

25 days. Lipid yield in this case was 0.26 g per g glucose,

and volumetric lipid productivity was 2.91 g l-1 day-1.

Flask fed-batch was conducted in shake flask with inter-

mittent feeding of sugar to keep the glucose concentration

above 20 g l-1. When the same cells were cultivated in a

15-l stirred bioreactor with controlled agitation, pH, and

aeration with the same sugar feeding scheme, the cells

grew to a concentration of 106.5 g l-1 within 134 h. The

lipid content in the cells in the bioreactor was 67.5%,

resulting in lipid productivity of 0.54 g l-1 h-1 [118–120].

Xue et al. [214] obtained a similar trend for batch and fed-

batch mode with Rhodotorula glutinis and monosodium

glutamate (MSG) wastewater. Both authors found that fed-

batch mode is a better option than batch mode for higher

productivity. Meesters et al. [142] and Yamauchi et al.

[216] also reported higher lipid productivity with Zyg-

omycets, C. curvatus, and L. starkeyi in fed-batch cultiva-

tion, respectively. Hsieh and Wu [82] compared biomass

production and lipid productivity for a Chlorella sp. in

intermittent fed-batch and in a repeated batch mode of

operation. These authors achieved higher productivity with

the repeated batch mode of operation. Repeated batch

operation was investigated also by Chiu et al. [34] with

Nannochloropsis oculata, Veloso et al. [200] with Phaeo-

dactylum tricornuturn, and Feng et al. [60] with C. vul-

garis. Feng et al. [60] reported that lipid productivity

increases with increased volumes of daily withdrawals

even though cell density goes down.

Continuous operation

In general, high cell yields occur when the cells are culti-

vated under steady-state conditions and when carbon is

used with the same efficiency at each stage of the growth

cycle [172]. Brown et al. [22] studied growth and lipid

accumulation with the yeast C. curvata D in both batch and

continuous mode and indicated that the specific lipid

accumulation rate increases during the course of batch

fermentation and as dilution rate is increased in continuous

cultivation. But the rate of non-nitrogenous non-lipid bio-

mass production undergoes a decrease under the same

conditions. Papanikolaou and Aggelis [157] reported that

the microorganism Y. lipolytica is capable of producing

huge quantities of lipid during growth on raw glycerol in

nitrogen-limited continuous cultures. In highly aerated

continuous cultures, lipid production was favored at low

dilution rates, and the highest lipid productivity achieved

was 0.12 g l-1 h-1 at the lowest studied dilution rate of

0.03 h-1. Increasing dilution rates resulted in increased cell

mass yield but with a decreasing lipid fraction. Fatty acid

composition of the lipids was not affected by dilution rate.

R. glutlnis was investigated for its ability to accumulate

lipids in continuous culture with molasses under nitrogen-

limiting conditions [4]. The maximum lipid content of 39%

(w/w) of dry cell biomass was obtained at a dilution rate of

0.04 h-1. Banerjee et al. [13] reported that only continuous

systems are realistically feasible systems for cultivation of

the fungus B. Braunii for microalgal biomass.

Composition of fatty acids in microbial lipids

Oils and fats are primarily composed of triacylglycerols

(TAGs). TAGs serve as a primary storage form of carbon
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and energy in microorganisms [87]; their fatty acid com-

position is also superior to that of other cellular lipids

(phospholipids and glycolipids) for biodiesel production

[165]. Fatty acid composition impacts on the saponification

number, iodine value of the particular lipids [101], and

influences the quality of biodiesel, such as cetane number,

heat of combustion, oxidative stability, cloud point, and

lubricity [110]. Although fatty acids in microbial lipids

range from lauric acid (C12:0) to docosahexaenoic acid

(C22:6), palmitic (C16:0), stearic (C18:0), oleic (C18:1),

and linoleic (C18:2) acids constitute the largest fraction. Of

these, palmitic and oleic acids are most abundant. Con-

sidering the saturated and unsaturated acid components,

approximately 25–45% are saturated fatty acids, and

50–55% are unsaturated. Thus, the ratio of unsaturated to

saturated fatty acids in microbial oils ranges between 1 and

2, which is somewhat similar to that in plant oils (such as

palm). As a result, the quality of biodiesel produced from

microbial oils can be expected to be similar to that pro-

duced from palm oil.

When cultivated under appropriately optimized condi-

tions, microorganisms are capable of producing significant

quantities of c-linoleic (C18:2) and arachidonic (C20:4)

acids. These fatty acids have high nutraceutical value, and

microbial oils are generally marketed as extracted oils as

health food. Technologically, the production of these high-

value compounds is accompanied by production of sig-

nificant quantities of other neutral lipids. Hence, separation

of non-neutraceutical fatty acids from the PUFA needs to

be explored.

The fatty acid composition of algal lipids is mainly

influenced by the medium composition [20, 50, 1, 59, 61,

85, 132, 133]. Liu et al. [132, [133] cultivated the micro-

algae Chlorella zofingiensis with glucose, and they found

that C16:0, C16:2, C18:1, C18:2, and C18:3 (n-3) were the

major fatty acids produced, out of which oleic acid con-

tributes 35.7% of the total fatty acids. Polyunsaturated fatty

acids C18:3x3, C16:4x3 were produced with the algae

D. salina by manipulating the NaCl concentration of the

medium [50]. The nitrogen content present in the medium

significantly altered the saturated and unsaturated fatty acid

compositions [20]. Hu and Gao [85] also found that the

fatty acid composition was influenced by the concentra-

tions of nitrate and phosphate in the medium and reported

that the key fatty acids produced with Nannochloropsis sp.

were C16:0, C16:1, and C18:1. Cultivation temperature can

also alter the fatty acid composition significantly [73].

They found that at temperatures below 20�C, a higher

production of eicosapentaenoic acid (EPA), GLA, and

dihomo-GLA was obtained at the expense of AA and

a-linoleic acid. Renaud et al. [176] also found that tem-

perature affects fatty acid composition. C16:0, C18:0, and

C18:1 fatty acids constituted 95% of all the fatty acids

produced with the oleaginous microalgae Pseudochloro-

coccum sp. growing on starch [123–125], out of which 42%

was oleic acid (C18:1) alone. C16:0, C16:2, C18:1, C18:2,

and C18:3 (n-3) were the major fatty acids in C. zofingi-

ensis cultured with glucose as the carbon source, and here

too C18:1 accounted for 35.7% of the total fatty acids

produced.

Fakas et al. [57, 58] reported that the fugal strains

Cunninghamella echinulata and M. isabellina have the

same fatty acid composition, and the composition is inde-

pendent of the carbon source. Linoleic acid (18:2) and

GLA are the key fatty acids produced during the initial

stages of growth. But when the lipid accumulation excee-

ded 20%, oleic and palmitic acids were predominant [57,

57, 58]. Fatty acid composition of lipids in M. isabellina

was 24–35% palmitic acid, 49–54% oleic acid, 2–11%

linoleic acid, 0.4–2% GLA, 1–2% palmitoleic acid, and

3.5–8.0% stearic acid [49]. Palmitic acid (27.3%), palmi-

tolic acid (3.5%), stearic acid (3.0%), oleic acid (46.1), and

linoleic acid (20.0) were present in Microsphaeropsis sp.

Huang et al. [89] and Zhu et al. [220] have reported lipid

production by fungi T. fermentans CICC1368 with glucose

and/or xylose as carbon source. With peptone as nitrogen

source, glucose as carbon source, C:N ratio of 163, pH 6.5,

and 25�C temperature, Zhu et al. [220] found that these

cells could produce as much as 62.4% of their dry weight

as lipids after 7 days of fermentation. With a cell density of

28 g l-1, this amounted to 17.5 g lipid per liter of broth.

Myristic acid, palmitic acid, stearic acid, oleic acid,

linoleic acid, and linolenic acid are the main fatty acids in

lipids from yeasts [118–120, 120, 130]. Patil [161] inves-

tigated the effect of the C/N ratio on lipid production and

on fatty acid composition of lipids in L. starkeyi cultivated

under different operating conditions. In batch shaken

flasks, the percent lipids in cells increased from 19 to 30%

as the C/N ratio was changed from 20 to 61. But the cell

mass yield decreased from 0.44 g DW per g glucose to

0.29 g DW per g glucose. C16:0 (38.7–44.8%) and C18:1

(40.7–50.2%) were the main fatty acids in the lipids,

although small amounts (5.9–14.5%) of C16:1 were also

produced. As the C/N ratio was increased, there was a

perceptible shift in fatty acids from C16 to C18 fatty acids.

Lipid profiles in L. starkeyi and other yeast cells have been

reported by a number of researchers [10, 216]. Angerbauer

et al. [10] reported lipid composition in L. starkeyi cells

grown on sewage sludge. Here, too, the main fatty acids

were C16:0 (56%), C16:1 (2%), C18:0 (14%), and C18:1

(26%). Small amounts of C14:0 (myristic acid), C18:3

(linolenic acid), C20:0 (arachidic acid), C20:1 (gadoleic

acid), and C22:0 (behenic acid) were also present; these

were all under 1% by weight and mostly under 0.5% by

weight. Yamauchi et al. [216] reported the fatty acid profile

of lipids produced by L. starkeyi cells grown on ethanol in
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a fed-batch culture. These authors found that fatty acid

composition in the cells undergoes change with time during

fed-batch cultivation; the fractions of C16:0 and C18:1

fatty acids in the intracellular lipids increase as time

increases up to 90 h. The fractions of C18:0 and C18:2

went down with time, while that of C16:1 remained

unchanged. C16:0 accounted for 28–32% of all the fatty

acids and C18:1 for 50–54%.

The nature of substrate affects the composition of fatty

acids in yeast lipids. Patil [161] noticed that cultivation of

L. starkeyi on starch as substrate resulted not only in a

higher fraction of lipids in cells, but also in more oleic acid

in cellular lipids than when the cells were cultivated on

glucose as carbon source.

Economics of microbial lipid production

Economically viable biofuels should be cost competitive

with petroleum fuels. The single-cell oil production cost

depends mainly upon the species chosen for cultivation

[18], lipid concentration within cells, and the concentration

of cells produced [21]. The cost of feed stock or carbon

source required for the production of microbial lipids

accounts for 60 to 75% of the total costs of the biodiesel

[90]. Hence, the economics of single-cell oil production can

be improved by using carbon in wastes such as wastewater,

municipal, and other carbonaceous industrial wastes and

CO2 in flue gases from boilers and power plants [57, 58].

Patil [161] conducted economic analysis of biodiesel pro-

duction with L.starkeyi and starchy waste from the sweet

potato processing industry as carbon source and determined

that microbial lipids could be produced at a factory gate

price of $2.30 per gallon and that it would support a bio-

diesel price of $3.00 per gallon with a continued subsidy of

$1.00 per gallon of biodiesel. The cost of lipid production

was influenced strongly by the cost of medium nutrients

(50%) needed for cultivation of cells and the cost of solvent

(25%) for the extraction of lipids from biomass.

Utilization of algae for commercial production of lipids

depends on use of efficient cultivation systems. Huntley

and Redalje [92] suggested that microalgal biodiesel pro-

duction is economically feasible using a two-stage open

pond system and estimated the price of oil derived from

microalgae was at US$2.00 per gallon. Kadam [100]

reported that the unextracted algal lipid can be produced at

a cost of US$ 1.4 per gallon using power plant flue gases.

The production cost of algal biodiesel can be reduced by

using economical photobioreactors that have advantages

like high productivity, low contamination, efficient CO2

capture, continuous operation, and controlled growth con-

ditions. Unfortunately, the capital and operating costs of

photobioreactors are very high [23]. Hence, Feng et al. [60]

evaluated utilization of heterotrophic cultivation and

reported that the algal biofuels can be competitive with

crude oil at US$ 63.97 per barrel with C. vulgaris from

artificial wastewater after accounting for the wastewater

treatment cost of US$ 0.4 m-3 and energy costs of $0.22/

KWh. Similarly, the biodiesel production cost with algae

C. zofingienesis growing heterotrophically on glucose as

sole carbon source was estimated by Liu et al. [132] at US$

0.9 l-1 or $3.40 per US gallon. These authors considered a

bulk glucose price of $100/ton and lipid yield of 0.21 g g-1

glucose and suggested that the production price of algae

can be reduced considerably if a lower cost carbon source

can be used for cultivation of cells [132].

Conclusion

Microbial lipids offer potential for sufficient production of

renewable fuels to impact consumption of fossil fuels. In

order to succeed in this endeavor, a suit of autotrophic,

heterotrophic, and mixotrophic microbial systems utilizing

diverse substrates is available. These have been described

in this review. In order to be cost effective, it will be

necessary to use innovative combinations of cultivation

systems involving all the carbonaceous materials including

wastes. Several recent efforts in this area use domestic and

industrial wastes. Economic analyses have indicated the

need to minimize costs of medium components and for

further research dealing with microbial systems capable of

producing lipids at relatively high productivities in mini-

mal media.
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